HINDERED ROTATION ABOUT N-COOR BONDS IN DIHYDRO-OXADIAZINES FROM AZODICARBOXYLATES AND MONOOLEFINS

Ernst Koerner von Gustorf¹⁾, Danny V. White²⁾, and Johannes Leitich

Max-Planck-Institut für Kohlenforschung, Abteilung Strahlenchemie, Mülheim/Ruhr and Department of Chemistry, Boston College, Chestnut Hill, Mass.

(Received in UK 21 May 1969; accepted for publication 26 June 1969)

At least 4 different paths are conceivable³⁾ for cycloaddition reactions of azodicarboxylates with monoolefins:

If symmetrical 1.2-disubstituted olefins are used (e.g. diovene, 1.2-dimethoxy-ethylene) the two ring protons are identical in I and IV, but different from each other in II and III. The nmr spectrum (in CDCl_3) of the 1:1 adduct (V) of dimethyl azodicarboxylate (DMAD) and trans-1.2-dimethoxy-ethylene shows two doublets for the ring protons at 4.53 and 4.79 τ at 40°C, thus ruling out I and IV. The distinction between II and III rests on the ir data: one should expect one C=N-vibration for II, one C=O and one C=N-vibration for III. V shows three bands in the 1600 - 1800 cm⁻¹ region: at 1678, 1714 and 1750 cm⁻¹ (in CCl_4); at 1660, 1688 and 1727 cm⁻¹ (in KBr). A possible explanation could be a conformational equilibrium Va $\xrightarrow{}$ Vb:

The inspection of molecular models shows that the overlap of the π -orbital of the CO group with the n-orbital of the nitrogen should be greater in Va than in Vb, due to less steric interaction of OCH₃ with \gtrsim CO than with OR. Therefore two different \gtrsim C=O vibrations (Va at lower wave numbers) could be expected. Hindered rotation about a \gtrsim N-COOR bond can be easily detected by nmr at low temperatures¹⁰⁾. At -30°C the nmr spectrum of V shows doubling of the two ring proton doublets. This process is not due to a change of the ring conformation, since the small coupling constant J_{xy} =1.4 cps (typical for vicinal H - antiperiplanar to N, O - in equatorial positions)¹¹⁾ remains unchanged . N-inversion appears very improbable too, since overlap with the \gtrsim CO group causes a substantial change in hybridization towards sp², facilitating this process. Hindered rotation about a \gtrsim N-COOR bond appears to be the most probable process. The free enthalpy of activation \wedge G* at the coales-cence temperature T_c ^{(280°K} for V)can be calculated with some reservations from the equation 10a)</sup>:

$$\wedge G_{c}^{*} = 4.57 T_{c} (9.97 + \log T_{c} / \wedge \nu)$$

with $\Lambda \nu$ being the separation of the two signals when exchange is slow ($\Delta \nu = 10$ cps for the low field ring proton of V). The value of 14.6 kcal/mol obtained for V is in the region of 13.5 ± 1.5 kcal/mol determined for hindered rotation about >N-COOR bonds in various tetrahydro-pyridazine derivatives¹⁰.

The ratio of the two conformers is 3.5:1 at - 30°C according to the integration. The ring protons appear more shielded in the less abundant conformer as expected for Vb. The ratio of intensities ¹²⁾ of the vibrations in V at 1714 and 1750 cm⁻¹ is 4.5:1, lending further support to the assignment of Va and Vb given. (>C=N at 1678 cm⁻¹). The spectral data presented for V are incompatible with the structural type II.

DMAD forms 1:1 adducts VI, VII and VIII with cis-1.2-dimethoxy ethylene⁴⁾, dioxene⁴⁾, and indene^{4,13)}. All these adducts show ir data similar to those of V, and the low temperature nmr spectra (in $CDCl_3$) reveal a conformational process, too.

Adduct	Temp.	$\mathbf{H}^{\mathbf{y}}$	$H^{\mathbf{x}}$	$^{\rm J}{}_{\rm xy}$	$^{\mathrm{T}}\mathbf{c}$	∆ G [*]
		[т]	[1]	[cps]		[kcal/mol]
VI	40°C	4.42(d)	4.84(d)	1.8		
	-20°C	4.37 (d) ?)	4.81(d) ?)		< 0°C	
VII	40°C	4.39(d)	4.59(d) 1.6		2000	12.0
	- 40°C	4.35(d) 4.52	4.59(d)	1.6	-20 C	13.2
VIII	40°C	4.65(d)	5.06(o)	5	2000	13.3
	- 54°C	4.48(d) 4.52(d)	~ 4.9 (m)	5	-30°C	

This conformational process in VI-VIII appears to be due to hindered rotation about a >N-COOR bond as in V. Therefore, they dro-uxadiazine structures should be assigned to VI - VIII.

Compounds V - VII add 1 mol $\rm CH_3OH/mol$, simply by being dissolved in $\rm CH_3OH$ (and excess solvent being stripped off). V and VI yield the same adduct IX with $\rm CH_3OH$; however, diastereomeric adducts IXa and IXb are obtained with $\rm CD_3OD$, demonstrating the $\rm S_N^2$ character of this reaction.

The ir spectra (in CCl₄) show NH (3400 cm⁻¹), C=O (1765, 1730 cm⁻¹), amide-II (1485 cm⁻¹) and no >C=N-, thus supporting the assigned structures¹⁴). X, the adduct of CH₃OH + VII, shows the ring protons in diaxial positions according to the relatively large J_{vv}.

Compound Solvent		Hy	H ^x	J _{xy}	O=C-OCH ₃	- C-OCH ₃	
		[τ]	[τ]	[cps]	[τ]	[τ]	
IX	CDC1 ₃	4.78	5.69	6.5	6.19, 6.23	6.48, 6.55, 6.65	
IXa	CD30D	4.87	5.69	6.5	6.22, 6.27	6.54, 6.65	
IXp	CDC1 ₃	4.79	5.58	6.5	6.19, 6.23	6.48, 6.54	
х	CDC1 ₃	4.88	5.54	6.5	6.19	6.50	

A conformational process [resulting in doubling of the H^y doublet] is detected in IX by nmr at 10°C. ΔG^* = 14.4 kcal/mol for this process is in good agreement with the values obtained for hindered rotation about >N-COOR bonds in the dihydro-oxadiazines.

The technical assistence of Miss I. Gerlach in measuring the nmr spectra is gratefully appreciated.

References:

- 1) Present address: MPI für Kohlenforschung, Abt. Strahlenchemie
- 2) Doctoral Dissertation, Boston College, 1969
- 3) See lit⁴⁾ for detailed discussion
- 4) a.) E. Koerner von Gustorf, D.V. White, B. Kim, D. Hess, and J. Leitich J. Org. Chem., under publication
 - b.) E. Koerner von Gustorf, D.V. White, J. Leitich, and D. Henneberg, <u>Tetrahedron Letters</u>, subsequent communication
- 5) E. Fahr and H. Lind, Angew. Chem., 78, 376 (1966) and references therein.
- 6) J. Firl and S. Sommer, Tetrahedron Letters, 1969, 1133 and 1137
- 7) E. Fahr and J. Markert, DECHEMA Colloquium, Frankfurt/Main 1969 Detailed discussions with Prof. Fahr prior to publication are gratefully appreciated.
- 8) J.J. Tufariello, T.F. Mich, and P.S. Miller, Tetrahedron Letters, 1966, 2293
- 9) No examples known to the authors
- 10) J.E. Anderson and J.M. Lehn, Tetrahedron (a.) 24, 123 (1968)
- (b.) $\overline{24}$, 137 (1968)
- 11) H. Booth, Tetrahedron Letters, 1965, 411
- 12) Assuming equal extinction coefficients
- 13) C. F. Huebner, E. M. Donoghue, C. J. Novak, L. Dorfman, and E. Wenkert, <u>J. Org. Chem.</u>, in press. Helpful correspondence with Dr. Huebner prior to publication is gratefully acknowledged.
- 14) All new compounds gave satisfactory elemental analyses and mass spectra.